\qquad Name \qquad Period \qquad

1. Translate the figure below according to the rule $(x, y) \rightarrow(x+3, y+2)$ and label the image.

A. If the slope of $\overline{B C}$ is -1 , determine the slope of $\overline{B^{\prime} C^{\prime}}$ without doing any calculations.
B. If the length of $\overline{B C}$ is $3 \sqrt{2}$, determine the length of $\overline{B^{\prime} C^{\prime}}$ without doing any calculations.
C. Determine the slopes of $\overline{A B}$ and of $\overline{A^{\prime} B^{\prime}}$. What do you notice about the slopes of corresponding segments of a translated figure?
D. Using a ruler, draw a line connecting corresponding vertices in the image and pre-image. Find the slopes of $\overline{A A^{\prime}}, \overline{B B^{\prime}}$, and $\overline{C C^{\prime}}$. What do you notice about the slopes of the segments connecting corresponding vertices of the image and pre-image of a translated figure?
2. Translate the figure below according to the rule $(x, y) \rightarrow(x-1, y+5)$ and label the image.

3. Translate the figure below according to the rule (x, $y) \rightarrow(x, y-4)$ and label the image.

For \#4-7, write a coordinate rule to describe the translation. Then answer the questions.
4. Coordinate Rule: \qquad

A. The slope of $\overline{B B^{\prime}}$ is $-\frac{5}{3}$. Name two other segments that also have a slope of $-\frac{5}{3}$.
B. If the length of $\overline{B B^{\prime}}$ is $\sqrt{34}$, determine the length of $\overline{C C^{\prime}}$ without doing any calculations.
C. Determine the length of $\overline{A C}$ and of $\overline{A^{\prime} C^{\prime}}$.
D. Determine the slope of $\overline{A C}$ and of $\overline{A^{\prime} C^{\prime}}$.
5. Coordinate Rule: \qquad

