\qquad Name \qquad
\qquad

For Exercises 1 and 2 graph the image of the polygon after each rotation, label the image. Then give the coordinates of the vertices for the image.

1. 90° about the origin.

J^{\prime} \qquad
K^{\prime} \qquad
L' \qquad
2. 180° about the origin.

B^{\prime} \qquad
C' \qquad
D^{\prime} \qquad

E' \qquad

The vertices of a parallelogram are $A(-4,1), B(-3,4), C(-1,4)$, and $D(-2,1)$. Rotate the parallelogram as described. Find and label the coordinates of the image.
3. 90° counterclockwise about the origin

A^{\prime}

C'

D'
\qquad
B' \qquad
\qquad
\qquad
4. 270° clockwise about the origin

A^{\prime} \qquad B' \qquad
C' \qquad

D' \qquad
5. Identify the transformation shown.
a.

b.

Determine if the blue figure 1 is a rotation of the red figure 2 about the origin. If so, give the angle and direction of rotation.
6.

7.

8.

Describe the transformation indicated by each rule.
14. $(x, y) \rightarrow(x-3, y+2)$
15. $(x, y) \rightarrow(x+7, y-4)$
16. $(x, y) \rightarrow(x, y+5)$
23. Determine which of these properties hold true for each type of transformation listed below.

Properties	Reflection	Translation	Rotation
Segments connecting the corresponding vertices of the image and pre-image are the same length.			
Segments connecting the corresponding vertices of the image and pre-image are parallel to each other.			
Corresponding segments in the image and pre-image are the same length.			
Corresponding angles in the image and pre-image have the same measure.			
Parallel lines in the pre-image remain parallel lines in the image.			
Corresponding segments in the image and pre-image have the same slope.			
Image has the same orientation as pre-image.			

1) Describe a transformation or a series of transformations that would carry figure 1 onto figure 2.

2) Describe a transformation or series of transformations that would carry figure 1 onto figure 2 .

3) A triangle $A B C$ with vertices at $A(2,-2), B(2,3), C(-4,-2)$ is reflected over the x-axis, rotated 90° clockwise about the origin, and then translated 3 units down and 2 units left. Graph both the original triangle and the final image after all transformations have been performed, labeling all coordinates. Then determine if the two triangles are congruent to each other.

4) Triangle $A B C$ and triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are plotted on the coordinate plane below.

Describe how you could move the $\triangle A B C$ to exactly match $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ using a series of two transformations.
\qquad
\qquad
\qquad
\qquad

